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Major Professor: Hüseyin Arslan, Ph.D.
Chris Ferekides, Ph.D.

Paris Wiley, Ph.D.

Date of Approval:
Mar 30, 2010

Keywords: Power line communication, noise, cyclostationarity, multipath, impedance,
attenuation

c© Copyright 2010, Hasan Basri Çelebi
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Özgür Yürür, M. Bahadır Çelebi, Alphan Şahin, Murat Karabacak, M. Cenk Ertürk, Hazar

Akı, Dr. Bilal Babayig̃it, Dr. Mustafa Emin Şahin, Murad Khalid, İsmail Bütün, and
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NOISE AND MULTIPATH CHARACTERISTICS OF POWER LINE
COMMUNICATION CHANNELS

Hasan Basri Çelebi

ABSTRACT

With the recent developments in technology, information and communication technolo-

gies (ICTs) are becoming more widespread and one of the basic building blocks of every

humans life. The increasing demand in broadband communication calls for new technolo-

gies. Power line communication (PLC) is one of the potential candidates for next generation

ICTs. Although communication through power lines has been investigated for a long time,

PLC systems were never taken into account seriously because of its harsh communication

medium. However, with the development of more robust data transmission schemes, com-

munication over the power lines is becoming a strong alternative technology because of the

existence of the infrastructure and the ubiquity of the network.

In order to establish reliable communication systems operating on power line networks

(PLNs), characteristics of power line channels have to be investigated very carefully. Unpre-

dictable characteristics of PLNs seriously affect the performance of communication systems.

Similar to the other communication channels, PLC environment is affected by noise, attenu-

ation, and multipath type of channel distortions. The level of noise in PLNs is much higher

than any other type of communication networks. Furthermore, the frequency dependent

attenuation characteristics of power lines and multipath stemming from impedance mis-

matches are the other distortion factors which have to be investigated in order to establish

a reliable PLC system.

vii
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In this thesis, we focus on modeling of noise, frequency dependent attenuation, and

multipath characteristics of power line channels within the frequency range between 30kHz

and 30MHz.
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CHAPTER 1

INTRODUCTION

In the late 1980’s, it had been observed that, fixed telephone services used only a part

of the frequency band available for communication in the copper cables. This idea led to

the invention of digital subscriber line (DSL) technologies. By using this unused frequency

bands, today, millions of houses throughout the world are getting broadband Internet access

services via DSL. The emergence of communication over power lines is similar. Current

standard alternating current (AC) electricity is being transmitted with frequencies at 50 or

60Hz, depending on the region of the world. Hence, it is not hard to see that, almost the

entire frequency band is available for other additional applications. Consequently, it was

proposed to transmit data over the unused frequencies of the power lines.

1.1 Advantages of PLC Systems

The concept of using the power lines for high speed data communication is not new.

Communication over power line has been investigated since 1980’s [1], however, it was

never seriously taken into account because of harsh channel characteristics. For several

years, power line communication (PLC) has been used for low data rate transmission with

the data rates up to a few kilobits per second. However, recent trend in PLC requires the

transformation of the electricity network into high data rate communication medium due

to its inherent advantages. Advantages of PLC systems can be listed as follows:

• The existence of the infrastructure and the unrivalled ubiquity of the network, which

virtually reaches anywhere in the world, makes the PLC medium very promising for

many communication applications such as Internet, data and voice transmission.

1
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• Due to the ubiquity of the existing infrastructure, low-cost broadband may become

a reality in areas that cannot get DSL, cable or wireless broadband. Even homes in

extremely remote areas could now potentially get broadband communication access

by PLC systems instead of satellite broadband communications which suffer from high

latency problem.

• PLC systems will allow broadband Internet access from every socket in every room

which provides the availability to have the access to the Internet everywhere.

• Since the system does not need any additional installations, PLC systems are intro-

duced as plug-and-play devices which are very cost effective and very easy to install.

• PLC systems are accepted as one of the most promising communication opportunities

for smart home applications. It will provide the opportunity to remotely control the

Internet-enabled household appliances without any additional installations. With this

system, it will be possible to control your refrigerators, heating systems, smoke and

fire alarm systems from the Internet. This idea will aid people with mobility problems.

1.2 PLC Systems

A simple PLC system is depicted in Fig. 1.1. The transmitter is located at the left

and the receiver is on the right. The important parameters that effect the communication

medium are the PLC channel itself, the noise added to the signal, and the impedance

mismatches that occur along with the propagation of the signal.

In order to connect the PLC transceivers to the mains line, coupling circuits are used.

These circuits are one of the must-have equipment for PLC systems. The coupling cir-

cuit placed between the transceiver and mains line to block the 501Hz or 60Hz2 frequency

currents in order to protect the system from the mains line voltage.
1This mains line frequency with 50Hz and voltage with 230V has being used in Europe. The reason

for that is at the beginning of twentieth century German AEG was the only power on electrical devices in
Europe. AEG decided that 50Hz is more metric-friendly so they wanted it to be 50Hz [2].

2Mains line voltage is estimated as 120V in the United States (US). The reason for that can be explained
as; the light bulb that Edison had discovered were using 110V direct current (DC). To maintain all the bulbs
even after converting the mains line to AC, the best approximation for the light bulbs was 120V AC. At the

2
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Figure 1.1 Graphical illustration of the PLC channel

PLC systems are also vibrantly marketing their importance, because in-expensive and

easier-to-use systems. There are several indoor and outdoor applications for PLC systems.

Indoor power line applications can be listed as follows [3–6]:

• Internet access for Internet protocol (IP) based devices,

• providing a home network for file sharing among computers, printers, cameras, tele-

visions, speakers, gaming tools,

• data file transfer medium for home control systems such as remote monitoring, alarm

systems,

• home automation systems for smart homes,

• in-vehicle network communication,

• remote detection of illegal electric usage,

• measuring the quality of power distributed to houses,

• communication tools for automated metering infrastructure (AMI) for smart grid

systems,

1. communication between electrical home devices and AMI for smart home appli-

cations,

2. communication from house to the central access unit for smart grid systems.

same time, the mains line frequency was determined like the same way in Europe. Since the most prevalent
company on electrical power systems was Westingtone at that time, the system that had been designed by
them was implemented [2].

3
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1.3 Standardization of PLC Systems

The only thing left for the PLC systems to penetrate the communication market is the

availability of an international technical standard. Up to now, CENELEC and HomePlug

standards are the most two popular standards for low data rate and high data rate PLC

systems, respectively. CENELEC is a European organization and it was founded in 1973

as a non-profit organization under Belgian law. CENELEC standards are one of the very

first published standards for PLC systems and it supports data rates up to 128kbps [7].

HomePlug Powerline Alliance is a non-profit organization founded in the United States

(US) by Cogency, Conexant, Enikia, Intellon, Netgear, RadioShack Co., Sharp, Panasonic,

Cisco systems, Motorola, Texas Instruments, Atheros, NEC electronics, Gigle networks,

GE energy, and Broadcom, together with several other participants [8]. The first standard

released by the HomePlug Powerline Alliance group was HomePlug 1.0. It was published in

2001 and supports data rates up to 14Mbps [9]. The next HomePlug standard was revealed

in 2005 and named HomePlug AV [10]. The main purpose of this standard was providing

data rates up to 150Mbps.

To regulate all the released standards throughout the world and publish an international

technical standard for PLC systems, IEEE founded a new working group (WG) in 2005

namely IEEE P1901 WG [11]. This WG is a merge of Panasonic and HomePlug Powerline

Alliance members. The scope of the P1901 WG is to develop an international standard for

high-speed communication devices through AC electric power lines using frequencies below

100 MHz. The goal is to reach data rates up to 100Mbps [12].

1.4 PLC Channel

Although PLC systems are becoming popular because of its existing infrastructure.

Since the main purpose of the power lines was not transmitting high frequency signals,

therefore, power line network (PLN) offer extremely adverse environment for high frequency

signals. Similar to any communication environment, attenuation, multipath stemming from

4
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impedance mismatches, and noise are the three distortion factors which play an important

role in the performance of communication systems over power lines.

• Noise in PLC channels is generated by all the electrical appliances connected to the

grid and it is also caused by the coupling of the radio broadcasters which transmit

their signals over short, middle, and long wave ranges.

• Attenuation is the loss of the power of the signal during its propagation and it depends

on the physical length of the channel and the transmission frequency band.

• Multipath effect in the power line channel is caused by the impedance mismatches and

is mostly dependent on both the physical characteristics and the physical topology of

the channel.

These factors determine the quality of the channel. The quality is mostly a parameter of the

noise level at the receiver and the attenuation of the electrical signal at different frequencies.

The higher the noise level, the harder it is to detect the received signal. If the signal gets

attenuated on its way to the receiver it could also make the decision harder because the

signal gets more hidden by the noise, which is expressed as signal-to-noise ratio (SNR) level

of the signal. SNR is a measure to quantify how much a signal has been corrupted by noise

and calculated as

SNRdB = 10log10

(Psignal

Pnoise

)
(1.1)

A ratio higher than 0dB indicates more signal power than noise power.

Multipath effect of the channel is the other disturbance while transmitting data over

the channel. Multipath phenomenon can be explained as the transmitted signal reaching

the receiving circuit by two or more paths with different delays.

1.5 Outline of Thesis

Each of these distortion factors must be investigated in detail in order to establish

reliable PLC systems. It is worth mentioning that investigation of each of these channel

5
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parameters requires exhaustive filed tests and measurements. Due to the amount of effort

required for understanding their characteristics, the analysis will focus on only two of the

above-mentioned factors. In this respect, noise and multipath in PLC systems will be the

main focus of this thesis.

In Chapter 2, noise in PLC channels is investigated3. A simulation model for PLC

channels is introduced in Chapter 3. Multipath and attenuation characteristics of PLC

channels are analyzed in Chapter 4. In Chapter 5, effects of different PLN topologies on

PLC channels are discussed.4. Conclusions and future studies are summarized in Chapter

6.

3This work is to partly appear in [13, 14]
4This work is to partly appear in [13, 15, 16]

6
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CHAPTER 2

NOISE IN PLC CHANNELS

In conventional communication systems, noise is usually modeled as additive white

Gaussian noise (AWGN). However, the measurements show that this model is not valid for

PLC channel. Noise in PLC systems consists of colored background noise, narrow-band

noise, and impulsive noise.

• Colored background noise results mainly from the summation of harmonics of mains

cycle and different low power noise sources present in the system. Colored background

noise is usually characterized with a power spectral density (PSD) decreasing with the

frequency.

• Narrow-band noise is caused by ingress of amateur radio and radio broadcasters in

long, middle, and short wave ranges. It mainly consists of sinusoidal signals with

modulated amplitudes.

• Impulsive noise is generated mostly by electrical appliances plugged into the PLN.

This type of noise is considered as the most significant among all type of noise sources

in PLC. Impulsive noise is classified as:

– Periodic impulsive noise synchronous with the AC cycle is caused by the rectifier

diodes used in power supplies which operates synchronously with the mains cycle.

– Periodic impulsive noise asynchronous with the AC cycle is generated by switched-

mode power supplies and AC/DC power converters.

– Aperiodic impulsive noise is caused by switching transients.

7
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Figure 2.1 Noise types observed in PLC systems

The main sources of the impulsive noise are various electrical devices connected to the

power line network. Impulsive noise needs to be characterized very carefully since it plays

an important role in the performance and reliability of the PLC systems. Some studies in-

vestigating the impulsive noise characteristics of PLC channel are available in the literature.

Noise characteristics of power line networks in various buildings are investigated in [17–20]

by performing measurements at different power outlets. It is worth mentioning that un-

derstanding the impulsive noise characteristics of electrical devices individually is essential

from the communication aspect. In this respect, some results on noise characteristics of

different electrical appliances are presented in [21, 22] as well. In this study, a particular

measurement setup is established in order to investigate the noise characteristics of various

electrical devices. The measurement setup is designed in a way that it significantly reduces

8
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Figure 2.2 Pictorial description of the measurement setup

the noise power of other undesired noise sources such as narrow band noise and the noise

generated by the other electrical loads within the power line network.

2.1 Measurement Setup

In order to investigate the impulsive noise characteristics of the electrical home devices,

all other types of noise, namely colored background noise, narrow band noise, and impulses

coming from PLN, have been suppressed by establishing an experimental environment which

is depicted in Fig. 2.2.

9
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List of the equipment that was used in the experiments is as follows:

1. anechoic chamber

2. power line filter

3. line impedance stabilization network (LISN)

4. transient limiter

5. Agilent E4440A PSA series spectrum analyzer

2.1.1 Anechoic Chamber

Anechoic chambers are shielded rooms fitted with Radio Frequency (RF) absorbers. The

main goal of anechoic chambers is attenuating the electromagnetic signals to completely

isolate inside the chamber from outside world activities. Since RF signals in low, middle,

and long wave ranges are coupled to power line cables, in order to isolate both the device

under test (DUT) and the cables inside the chamber from narrowband noise, anechoic

chamber is used.

2.1.2 Power Line Filter

As described in the previous section, PLNs are affected from different noise sources. In

order to increase the reliability of the measurements, rejecting all the noise coming from

PLN is crucial. To suppress the undesired noise which may leak into the measurement

setup from the mains line power line filter is used. The operating frequency of the power

line filter ranges from 30kHz to 1GHz and provides more than 60dB attenuation between

100kHz and 1GHz [23].

2.1.3 LISN

In power line systems, the impedance of the network is not constant and changes with

mains voltage. This fluctuation causes an impedance mismatch between measurement

equipment and the line. This situation must be eliminated in order to enhance the ac-

10
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Figure 2.3 Block diagram of LISN

curacy of the measurement results. A line impedance stabilization network (LISN) is used

for compensating this inconvenience and generating a known impedance value to get rid of

impedance mismatches, which may hurt the reliability of the measurements. The second

function of the LISN is isolating the measurement equipment from mains voltage.

Block diagram of LISN is depicted in Fig. 2.3. LISNs are “Pi-type” filters and they

are very powerful electrical noise filters. A LISN mainly consists of two capacitors and one

inductor as it is shown in Fig. 2.3. When the power comes from the mains line, capacitor

C1 offers very low reactance to high frequency components of the received noise and very

high reactance to low frequency components. Consequently, noise at higher frequencies

than 50Hz are rejected and only the low frequency components are kept. Since inductor L

acts as a short circuit for low frequency components and open circuit for higher frequencies,

all the components that belong to higher frequencies are filtered. As a result, only the low

frequency components of the mains line will reach to DUT. When the DUT is turned on,

the higher frequency components seen at point x will all belong to DUT and they will be

prevented to go back to power line by the inductor L. Capacitor C2 will act as the same

as capacitor C1 acts. It will transmit the higher frequency components of DUT while it

blocks the components belong to lower frequencies such as the mains line voltage. As a

result, with the help of the resistance R2, higher frequency components of the noise, which

11
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are generated by the DUT, will be captured by the spectrum analyzer in a very efficient

and effective manner.

2.1.4 Transient Limiter

Transient limiter is integrated into the measurement setup to reject transients which

may possibly damage the system hardware.

2.1.5 Spectrum Analyzer

Agilent E4440A PSA series spectrum analyzer was used in order to capture the noise

characteristics of DUT. In every measurement, data with a duration of 200ms was recorded.

Span of the spectrum analyzer is adjusted in a way that the frequency content of captured

signal extends from 30kHz to 30MHz.

Throughout the measurement campaigns, all these measurement equipment itemized

above as well as the DUTs except for the spectrum analyzer are placed inside the anechoic

chamber. In addition, noise data is obtained by plugging each DUT individually into an

outlet within the anechoic chamber not allowing any other device to share the same outlet

at the time of the measurement.

In order to evaluate the effectiveness of the measurement setup before starting the exper-

iments, noise level of two outlets, one inside and the other outside the anechoic chamber, are

compared. As depicted in Fig. 2.4, a remarkable change is observed. It is clearly seen that

the narrow band noise and the noise due to the electrical loads connected to the power line

network are rejected successfully. For most of the frequencies, more than 20dB suppression

of noise is achieved.

2.2 Noise Model and Measurement Data Processing

All the electrical devices connected to the PLN are becoming a noise source while they

introduce different impedances to the network at termination points. It is possible to say for

most of the electrical devices, due to the mains line, the noise generated and the impedance

introduced by the devices are repeating itself for every cycle of AC voltage [24]. This makes

12
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Figure 2.4 Noise levels of two outlets one inside and the other outside the anechoic chamber

the PLC medium a time variant channel. In this section, first the model of the noise in PLC

systems that is widely employed in the literature will be given. Next, the measurement data

processing which is based on the model provided will be detailed.

2.2.1 Noise Model

It is shown that, the instantaneous power spectral density (PSD) of the devices connected

to the PLC network is found to be periodic with the mains voltage frequency [14]. This

periodicity stems mainly from circuitry of the devices and can be 50Hz or 100Hz due to the

fact that some of the devices are affected by the absolute value of the mains voltage, whereas

some by its polarity. Due to their periodic structure, noise in PLC should be analyzed with

a model whose parameters are related to the instantaneous value of the periodic mains line

voltage. Consequently, cyclostationary random signal model is the best model to represent

the noise generated by the electrical devices in PLNs.

13



www.manaraa.com

A process, n(t) is cyclostationary if its mean µ and autocorrelation functions denoted

as R(·) satisfy the following conditions:

µ(t + mT ) = µ(t) (2.1)

R(t + τ + mT, t + mT ) = R(t + τ, t) (2.2)

The conditions set above indicate that the mean and correlation properties of the process

do not change at the integer multiples of a period T . In PLC systems, T corresponds to

half or one AC cycle period, T0.

In order to verify the cyclostationarity of the noise and show that noise in PLC chan-

nels is repeating itself with a period of T or T/2, a simple analysis is performed on one

of the devices measured by the measurement setup. The analysis is based on observing

autocorrelation of the absolute value of the captured noise waveform over a duration that

is a multiple of the AC cycle duration T0. The result of the analysis, shown in Fig. 2.5,

confirms the cyclostationary model. Note that the autocorrelation of the process is defined

as follows:

R(t + τ, t) = E{n(t)n∗(t + τ)} (2.3)

where E{·} is the statistical expectation operator, (·)∗ denotes the complex conjugate of its

input, τ is the time shift in the correlation operation.

Consequently, the instantaneous PSD of noise can be calculated by taking the forward

fast Fourier transform (FFT) operation of the autocorrelation of the signal

S(t, f) =
∫ ∞

−∞
R(t + τ, t)e−j2πfτdτ (2.4)

It can be seen that, the instantaneous PSD is time dependent and periodic as well. In

order to eliminate the time dependency of (2.4) and reveal the average PSD of a cyclosta-

tionary process, an averaging over the duration of T0 must be performed. The average PSD

of a cyclostationary process is given by
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S(f) =
1
T0

∫ T0/2

−T0/2
S(t, f)dt (2.5)
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2.2.2 Measurement Data Processing

It can be clearly seen from (2.4) that the periodicity in the autocorrelation function

appears as a periodicity in the instantaneous PSD of the random process. Because of this

inherent periodicity, time–frequency analysis (TFA) needs to be employed to reveal the

cyclostationary feature of the noise generated by the devices. TFA is commonly used in

the literature for characterizing and manipulating signals whose statistics vary in time.

Since statistics of noise generated by devices are varying during one AC cycle, averaging

the TFAs over several AC cycles is used to reveal the features of noise. In order to see the

time evolution of the frequency content of the received noise, data denoted as n needs to

be divided into sections considering the mains voltage period T0.

Assume that the duration of the captured data equals the M multiple of T0 and each

section with the duration of T0 is divided into K pieces. Note that the total duration of the

recorded data equals MT0. Let NMK(k, m) denote the discrete data samples falling into

the kth piece within the mth AC cycle:

NKM (k,m) = n(
kT0fs

K
+ mT0fs :

(k + 1)T0fs

K
+ mT0fs) (2.6)

where k and m are the factors that assume values from 0 to K − 1 and from 0 to M − 1,

respectively. fs is the sampling frequency of the measurement equipment that captures the

noise data, (x : y) implies the inclusion of discrete data samples from start position x till

y. If the periodogram of (2.6) is averaged by considering each of the pieces falling into the

same phase of the AC cycle, the following expression is obtained:

SNKM
(k, m) =

∑K−1
m=0

K
T0fs

|FFT (NMK(k, m))|2
M

(2.7)

where FFT (·) corresponds to forward FFT operation. Note that the time resolution of the

TFA is equal to T0
K = Tr. For the ease of understanding, this operation is illustrated in

Fig. 2.6. As can be clearly seen, it basically averages the periodogram of each kth piece in

every AC cycle.
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Impulsive noise characteristics of various types of electrical home devices have been

measured; however, only ten devices, which are considered to be the most significant noise

sources, are investigated. These devices are as follows: computer tower, dimmer, drill,

vacuum cleaner, TV set, LCD monitor, CRT monitor, fluorescent, laptop charger, and

washing machine. Results are shown in the Fig. 2.9, Fig. 2.10. , Fig. 2.11, Fig. 2.12,

Fig. 2.13, Fig. 2.14, Fig. 2.15, Fig. 2.16, Fig. 2.17, Fig. 2.18, and Fig. 2.19. In addition,

in order to see the effectiveness of the measurement setup and the time variation of the

background and narrowband noise in one AC cycle, TFA of noise captured from outside the

chamber is depicted in Fig. 2.8.

Column a of the figures demonstrates the TFA of the noise generated by the electrical

devices. The process while deriving this subfigure is formulated in (2.7) and illustrated in

Fig. 2.6. Note that the power levels in TFA figures for each device are represented with

different color codes. Column b is the demonstration of the time average of instantaneous

PSD as defined in (2.5). A similar operation was performed along the frequency axis as well

in order to see the noise power evolution over the duration of mains cycle. The outcome of

this operation is plotted in column c.

Column a, b, and c show that each device exhibit unique characteristics from the per-

spective of both time and frequency. In order to quantify the concentration of the power

over frequency, the bandwidth of the noise injected into the power line network is computed

by considering the frequencies at which a 10dB decrease from the maximum power value is

observed. In addition, if the noise floor is derived from Fig. 2.4, some important conclusions

regarding the noise characteristics of the devices in frequency domain (column b) can be

outlined as

• Computer tower : A noticeable rise is observed over the background noise as high as

55dB for the measurement frequency range with most of the power contained up to

4MHz

• Dimmer : A noticeable rise is observed over the background noise as high as 35dB for

the measured frequency range with most of the power contained up to 5MHz
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• Drill : A noticeable rise is observed over the background noise up to 45dB for the

measured frequency range with most of the power contained between 11MHz–17.5MHz

• Vacuum cleaner : A noticeable rise is observed over the background noise up to 30dB

for the measured frequency range with most of the power dispersed over various fre-

quency ranges

• TV set : A noticeable rise is observed over the background noise up to 35dB for the

measured frequency range with most of the power contained between 12.5MHz–21MHz

• LCD monitor : A noticeable rise is observed over the background noise up to 20dB

for the measured frequency range with most of the power distributed over a broader

range of frequencies with prominent spikes at some particular frequencies

• CRT monitor : A noticeable rise is observed over the background noise up to 20dB for

the measured frequency range with power mostly distributed over a broader range of

frequencies with prominent spikes around 4MHz, 10MHz, and 12.5MHz

• Fluorescent: A noticeable rise is observed over the background noise up to 10dB for

the measured frequency range with most of the power concentrated around 5MHz

• Laptop charger : A noticeable rise is observed over the background noise as high as

15dB for the measured frequency range with most of the power contained up to 25MHz

• Washing machine: A noticeable rise is observed over the background noise up to 20dB

for the measured frequency range with most of the power contained around 7MHz

Time domain characteristics (column c) of the devices are analyzed as well. The obser-

vations can be listed as

• Computer tower : Raise up to 45dB above the background noise floor for most of the

AC cycle duration

• Dimmer : Raise up to 40dB above the background noise for a very short time over the

AC cycle duration
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• Drill : Raise up to 50dB above the background noise floor for a duration of ≈ 8ms

• Vacuum cleaner : Raise up to 20dB above the background noise floor covering half of

the AC cycle duration

• TV set : Raise up to 30dB above the background noise floor for a duration of 4ms

• LCD monitor : Raise up to 13dB above the background noise floor covering most of

the AC cycle duration

• CRT monitor : Raise up to 10dB above the background noise floor covering most of

the AC cycle duration

• Fluorescent : Raise up to 6dB above the background noise floor covering half of the

AC cycle duration

• Laptop charger : Raise up to 13dB above the background noise floor covering half of

the AC cycle duration

• Washing machine: Raise up to 18dB above the background noise floor covering half

of the AC cycle duration

In a similar procedure defined in [25], the cyclostationary behavior of the noise gener-

ated by electrical devices has been quantified by considering two parameters, namely peak

excursion and maximum rate of change of the instantaneous PSD which are denoted as Pe

and Rc, respectively. Pe indicates the maximum power change value during one AC cycle

among all the frequencies, and Rc reveals the maximum power change in Tr second along

the same frequency axis in one AC cycle. Pe and Rc are formulated as follows:

Pe = max{10log10[SNKM
(t, f)]} −min{10log10[SNKM

(t, f)]} (2.8)

Rc = max
{∣∣10log10[SNKM

(t + Tr, f)]− 10log10[SNKM
(t, f)]

∣∣} (2.9)
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Figure 2.7 Maximum power of change for each frequency over an AC cycle

Results for the measured electrical devices are tabulated in Table 2.1. As can be clearly

seen, computer tower and drill are the most significant noise sources.
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Table 2.1 Pe and Rc of electrical loads

Measured device Pe(dB) Rc(dB)

Computer tower 61.26 17.43

Dimmer 45.61 36.83

Drill 59.66 37.03

Vacuum cleaner 42.49 21.92

TV set 42.13 4.95

LCD monitor 30.32 21.68

CRT monitor 28.75 15.45

Fluorescent 24.30 7.98

Laptop charger 23.47 21.12

Washing machine 40.81 26.72

In order to have a better understanding of the significance of devices, the maximum rate

of change for each frequency has been plotted in Fig. 2.7(a) and 2.7(b).

Finally, in order to see the PLC noise when two or more devices are plugged into PLN

at the same time, TV set and dimmer are placed together into the measurement setup

and noise generated by devices is recorded and computed. the TFA analysis is shown in

Fig. 2.20. TFAs of TV and dimmer noise are shown seperately in Fig. 2.14 and Fig. 2.11,

respectively. As can be seen in Fig. 2.20, when these two devices are connected together,

they still generate their noise independently from each other. Impulses generated by dimmer

are located at 6.3ms and 16.3ms, while TV is continuously generating its noise, which proves

the additive effect of noise in PLC.
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Figure 2.8 TFA of background noise captured from outside of the measurement setup

22



www.manaraa.com

Figure 2.9 TFA of background noise in anechoic chamber
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Figure 2.10 TFA of computer tower
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Figure 2.11 TFA of dimmer
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Figure 2.12 TFA of drill
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Figure 2.13 TFA of vacuum cleaner
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Figure 2.14 TFA of a TV set
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Figure 2.15 TFA of LCD monitor

29



www.manaraa.com

Figure 2.16 TFA of CRT monitor
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Figure 2.17 TFA of fluorescent
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Figure 2.18 TFA of a laptop charger
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Figure 2.19 TFA of washing machine
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Figure 2.20 Additive effect of noise
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CHAPTER 3

SIMULATING THE PLC NOISE

In this section, approaches proposed in the literature for simulating the noise in PLC

channels will be discussed [17, 21, 26–29]. As it is mentioned in Sec. 2, noise in PLC systems

can be classified in five categories, depicted in Fig. 3.1.

Background noise of PLC channels can be assumed as the addition of colored background

noise and narrowband noise coupled to he power line cables [30]. The addition in frequency

domain can be stated as

nbg(f) = ncG(f) + nnb(f) (3.1)

where nbg(f), ncG(f), and nnb(f) represent the total background noise, the colored back-

ground noise which is a colored Gaussian noise, and narrowband noise, respectively. The

total background noise nbg(f) remains stationary for very long times, e.g. for several min-

utes or even hours [17, 31].

Among all the noise sources depicted in Fig. 3.1,

Figure 3.1 Noise types observed in PLC systems
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Figure 3.2 Generating the colored Gaussian background noise

• periodic impulsive noise - synchronous to the AC cycle,

• periodic impulsive noise - synchronous to the AC cycle, and

• aperiodic impulsive noise

are the most important noise sources in PLC channels, because their overall durations are

in microseconds level which make them highly time varying and they cause most of the

errors at data transmission [14, 28, 32].

Proposed power line noise takes all the noise sources under consideration and generates

each noise type individually.

3.1 Background Noise

As stated before, PSD of background noise in PLC channels decreases with frequency.

Its variation over time is very slow and accepted as to be stationary for long time of periods.

Generation of the colored Gaussian background noise ncG(t) is depicted in Fig. 3.2.

The spectral shape of colored Gaussian background noise is obtained from the mea-

surements. Since the scope of this measurement was to determine the colored Gaussian

background noise of PLC channels, to reject the narrowband noise from PLN, anechoic

chamber was used. The noise shaping filter Hn(f) is depicted in Fig. 3.3.

3.2 Narrowband Noise

The second noise type that constitutes the total background noise is narrowband noise.

Narrowband noise sources are mainly broadcast radio stations in short, middle, and long
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Figure 3.3 PSD of noise shaping filter

wave ranges. This type of noise consists of sinusoidal signals with modulated amplitudes [17]

and can be described as

nnb(t) =
N∑

k=1

Ak(t)sin(2πfkt + ϕk) (3.2)

where N represents the total number of narrowband interferers, and Ak(t), fk, and ϕk

describe the amplitude, central frequency and phase of the received narrrowband noise,

respectively. Total number of interferers and their central frequencies can be extracted

by empirical measurements and phase ϕk of each noise source can be selected randomly

between [0, 2π].

3.3 Impulsive Noise

The most significant noise sources in PLC channels that affect the quality of the trans-

mission link are impulsive noise sources. Impulsive noise characteristics are studied in [29,

32] and their structures are discussed. It is found that, for most of the cases, structures

of the impulses in PLC channels consist of damped sinusoids. As shown in the Sec. 2, the
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most powerful contents of these impulses are located in low frequencies. The mathematical

form of these impulses can be shown as sum of damped sinusoids with different frequencies

nimp(t) =
ND∑

k=1

Ak.sin
(
2πfk(t− tp) + ϕk

)
.e

(
(−t−tp)/τk

)
.η

( t− tp
tη

)
(3.3)

where ND is the number of damped sinusoids that form the impulse, Ak represents the

amplitude of the kth sinusoid, fk denotes the pseudofrequency of the sinusoid, tp is the

arrival time of the impulses, ϕk represents the phase of the kth sinusoid, τk is the damping

factor, and η(t) denotes a square pulse with a duration of tη. The amplitude value Aη of

square pulse η(t) is

Aη =





1, if 0 < t < tη

0, elsewhere
(3.4)

The amplitude of each damped sinusoid Ak is selected to be ∼ N (0, Gkσ
2
n) where Gk denotes

the increment of the impulse over the background noise with a variance of σ2
n. Values of Gk

can change between 20− 30dB.

Throughout the simulations, impulsive noise types in PLC channels are analyzed into

two categories

3.3.1 Periodic Impulsive Noise

It is found in [17] that most of the impulses received from PLC channels are periodic

and has repetition rates between 50− 100Hz. Regarding to this result, the periodic arrival

time of impulses tp should be 10ms or 20ms. The overall duration time of impulses is

measured around 50µs which is set to be the duration of the square pulse tη. From the

measurement results discussed in [29, 32], number of damped sinusoids ND is determined as

3 and pseudofrequencies of the damped sinusoids are set as 300KHz, 2MHz, and 3.5MHz.

38



www.manaraa.com

3.3.2 Aperiodic Impulsive Noise

The main difference between aperiodic and periodic impulses are their arrival times.

In the simulations tp values of these impulses are modeled as random variables. However,

as discovered and explained in [31], distribution of interarrival time between two succes-

sive aperiodic impulses is modeled with an exponential distribution with mean of 100ms.

Interarrival time of impulses can be formulated as

tint = tp(n)− tp(n− 1) (3.5)

where tp(n) represents the arrival time of nth aperiodic impulse. The total duration of ape-

riodic impulses are set to 100µs and their amplitude variation are adjusted to be distributed

as Gaussian like the periodic impulses.

Real and imaginary parts of a simulated impulse with a time duration of 50µs are

depicted in Fig.3.4 and Fig.3.5, respectively. Finally, by using the simulation environment

a realistic noise data for PLC channels is generated and plotted in Fig.3.6. Length of the

generated noise is estimated as 80ms which is four AC cycles.
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Figure 3.4 Realization of real part of an impulse noise
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CHAPTER 4

MULTIPATH EFFECT IN PLC CHANNELS

Power lines are also affected from multipath phenomenon like wireless communication

channels. In order to model the PLNs for high speed data transmission, multipath character-

ization of the PLNs has to be analyzed very carefully. Instead of point-to-point connections

between transmitter and receiver, PLN topology follows a random bus topology type of dis-

tribution. For this reason, multipath phenomenon is becoming a very significant drawback

in PLCs.

However, unlike the wireless communication mediums, since the topology of an indoor

PLN is stable and immovable, analytical calculation of the frequency response of any point-

to-point channel is possible by analyzing the multipath components of any specific indoor

PLN. It is worth mentioning that, multipath components are mostly affected by the physical

topology of the network, length of the cables, characteristic impedances of the cables and

loads plugged into the termination points of the PLN. In order to come up with a realistic

solution, priori knowledge about the PLN is needed.

In this section, first, multipath characteristics of PLC channels is given. Next, attenu-

ation model, which is a significant factor while calculating the transfer function of a PLC

channel, is derived. Measurement results are compared with the simulation results.

4.1 Multipath Phenomenon in Power-Line Channel

In power-line channels, signal propagation does not only take place through the closest

path between transmitter and receiver. Reflections are caused because of the impedance

mismatches in branching points and different loads plugged into the PLN. Characteristics of

these reflections depend highly on the topology of the PLN and the electrical loads present
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Figure 4.1 Example of an indoor PLN with the directional segments shown and numbered.

in the network. Even for a homogeneous network, where one type of cable is used, lots of

reflections occur at branching points of cables and termination points where electrical loads

are connected.

Example of a simple indoor PLN is depicted in Fig. 4.1. The possible signal propagation

segments are shown and numbered. As can be seen from the figure, every line connected

to the power grid causes two more directional paths which are opposite directions. So, the

number of possible segments of a PLN is twice the total number of lines. In Fig. 4.1, the

network consists of 8 nodes, 7 lines, and 14 possible directional segments. For instance, if

the transmitter is located at the termination point named as T2 and the receiver is located

at T5, various propagation paths can be defined by using numbered directional segments

such as

4 → 13 → 9 (which is assumed as the line− of − sight (LOS) path)

4 → 13 → 14 → 13 → 9

4 → 3 → 4 → 13 → 9

4 → 11 → 12 → 13 → 9

4 → 1 → 2 → 13 → 7 → 8 → 9

...
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Theoretically, even in a very simple PLN, it is possible to define infinite number of

different propagation paths. However, due to the frequency dependent cable loss in PLC

channels and the transmission and reflection coefficients, which will be explained in the

next section, power of the multipath components, which travel more, will decrease more

than others. It can be generalized as, if the propagating length of a multipath component

increases, it will affect more from the frequency dependent path-loss and more transmission

and reflection coefficients will occur along its propagation path. Consequently, number of

multipath components can be limited to a finite number of significant paths.

4.2 Transmission over Power-Line Channel

In PLC channels, when a signal propagates from one location to another, reflections

occur at every impedance discontinuities along the propagation path. Main reasons of

impedance mismatches can be defined as; different characteristic impedances of different

cables, electrical devices plugged into the PLN from the termination points, and branching

points where more than two cables are connected.

4.2.1 Reflection and Transmission Coefficients

The amplitude and phase ratio of reflected and transmitted energy to the incident

signal is expressed by reflection coefficient and transmission coefficient, respectively. These

coefficients are dependent to the characteristics impedance of cable and input impedances

of loads.

Characteristic impedance of a cable is dependent to the cable’s circuit coefficients and

operating frequency, however, it has nothing to do with the length of the cable. Z0 can be

calculated as

Z0 =

√
R + jwL

G + jwC
(4.1)

where Z0 represents the characteristic impedance of the line the signal propagates, w is

the angular frequency, and R, L, G, and C represent the per-unit-length resistance, induc-

tance, conductance, and capacitance values, respectively. As it is shown in [33, 34], for the
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frequency range planning to be used in PLC channels, equations result in R << wL and

G << wC. The simplified expression of Z0 can be shown as

Z0
∼=

√
L

C
(4.2)

Consequently, for the cables that are commonly used in power lines, characteristics impedance

Z0 and the impedance values of the loads connected to the termination nodes ZL are as-

sumed as real valued and independent from the operating frequency [33].

Z0(f) = Z0 and ZL(f) = ZL for 30kHz ≤ f ≤ 30MHz (4.3)

Since reflection and transmission coefficients are related to the impedance values, they

are becoming frequency-independent too.

Γ(f) = Γ and T (f) = T for 30kHz ≤ f ≤ 30MHz (4.4)

where Γ and T denote the reflection coefficient and transmission coefficient, respectively.

These two coefficients at a particular impedance discontinuity are given by the following

equations (see Appendix A) [35]:

Γ =
ZL − Z0

ZL + Z0
and T = 1 + Γ =

2ZL

ZL + Z0
(4.5)

where ZL is the impedance that the signal sees at the discontinuity.

A different way to calculate characteristic impedance of a cable is by measuring the

input impedances of the cable with short and open-circuit termination endings [36]. The

square-root of the product of these two input impedances gives the characteristic impedance

Z0 =
√

ZscZoc (4.6)

where Zsc and Zoc represent input impedance values of the cable with short and open-circuit

endings, respectively.
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4.2.2 Reflection Factor

The effect of numerous reflections and transmissions along the ith propagation path

is represented as the reflection factor which is formulated as the multiplication of all the

reflection and transmission coefficients the signal sees. It quantifies the amount of total

loss on the propagating signal stemming from the impedance mismatches present in the

PLN. Reflection factor, denoted as rie
jθi , is usually but not necessarily a complex number.

Reflection factor of ith path can be expressed as;

rie
jθi =

K∏

k=1

{Γik}
M∏

m=1

{Tim} (4.7)

where K and M are the total reflections and transmissions seen by the transmit signal along

a the particular propagation path, respectively.

However, since each received replica of the transmitted signal travels different length

of paths, denoted as di, time delays occur among them and it shifts the phase of the

signal. This factor depends on the length of the propagation path and the velocity of the

propagation within the power line. The delay of the ith path can be represented as;

τi =
di

v
where v =

c0√
εr

(4.8)

where v represents the propagating velocity within the cable which depends on the speed of

light c0 and the relative dielectric constant εr of the insulating materials of the cable. Note

that the speed of the propagation within the power line is assumed to be 60% of the speed

of light in this study [37].

4.2.3 T Network Structure

In order to understand multipath phenomenon in a PLN, a T network structure, as

depicted in Fig 4.2, is analyzed. If the transmitter and receiver are located in point A and

point D, respectively, it is seen that, the communication channel consists of one branching

point where 3 cables are connected. Cable lengths are represented with l1, l2, l3 and
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Figure 4.2 Multipath propagation in T network.

characteristic impedance of each cable is Z1, Z2, Z3. The termination load at node C is

represented by ZC . In order to simplify the calculations, input impedances of transmitter

and receiver are assumed to be matched to the characteristic impedances of the cables 1

and 3.

Ztransmitter = Z1 and Zreceiver = Z3 (4.9)

If a signal leaves node j and reflection occurs at node i and then signal propagation

continues backward to node j, the reflection factor at node i is represented as Γij . If a

signal leaves the node i and a transmission takes place through node j, the transmission

coefficient for node j is represented as Tji. So the reflection and transmission coefficients
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Table 4.1 Multipath components for T network

Signal propagating nodes Reflection factor Length of propa-
gation

1 A → B → D TAB l1 + l3

2 A → B → C → B → D TAB. ΓCB. TCB l1 + 2l2 + l3

3 A → (
B → C → )2

B → D TAB. Γ2
CB.ΓBC . TCB l1 + 4l2 + l3

...
...

...
...

N A → (
B → C → )N−1

B → D TAB. ΓN−1
CB .ΓN−2

BC . TCB l1+2
(
N−1

)
l2+l3

shown in Fig. 4.2 can be calculated as

ΓBA =
ZB2−3 − Z1

ZB2−3 + Z1
where ZB2−3 = Z2//Z3 (4.10)

ΓBC =
ZB1−3 − Z2

ZB1−3 + Z2
where ZB1−3 = Z1//Z3 (4.11)

ΓCB =
ZC − Z2

ZC + Z2
(4.12)

and (4.13)

TCB =
2ZB1−3

ZB1−3 + Z2
(4.14)

TAB =
2ZB2−3

ZB2−3 + Z2
(4.15)

where ZC represents the load impedance connected to the node C. The N strongest mul-

tipath components are listed in Table 4.1.

Consequently, when a signal is transmitted over a PLN, the received signal consists of

attenuated, delayed, and phase-shifted version of the transmitted signal. If the total number

of received multi-path signals is limited to N , an expression for the frequency response of
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the channel can be characterized as follows:

H(f) =
N∑

i=1

{[ K∏

k=1

Γik

M∏

m=1

Tim

]
A(f, di)e−j2πfτi

}
(4.16)

where A(f, di) means the frequency and distance dependent attenuation which will be dis-

cussed in the next section.

4.3 Attenuation Analysis

One of the biggest impairments of PLC channels is the increasing signal attenuation

with increasing distance and frequency. Attenuation characteristics of power-line cables

are studied in literature extensively. Attenuation models are introduced in [38, 39], in

these approaches parameters are obtained by measuring the actual PLN. A mathematical

formulation is derived in [33], in the proposed method attenuation parameters are calculated

individually for each multi-path component.

In order to have a better understanding about attenuation in PLNs, several measure-

ments with different lengths of cables at a particular frequency range were carried out in

this study. Its dependency on both frequency and length is investigated. The cable type

which is widely available in the PLNs established in Turkey, was used in the measurements.

The cross-section of the measured cable is depicted in Fig.4.3. Measurement campaigns

were performed by using Agilent vector network analyzer (VNA). The measured frequency

range was from 30kHz to 30MHz and cables with length of 10m, 15m, 25m, 40m, 50m, 65m,

75m, 90m, 100m, and 200m were examined.

Figure 4.3 Multi-core cable with copper conductor
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In this approach, the attenuation values of the cables with different lengths were consid-

ered. In this way, several measurements which exhibit the attenuation tendency in different

lengths of cable at particular frequencies were obtained. At each frequency, the values were

fitted via least square fitting. Consequently, a constant attenuation value was obtained for

every frequency, namely unit length attenuation profile (ULAP) which basically reveals the

attenuation of the cable per meter. Attenuation for ith path having a length of di meters

can be calculated as:

A(f, di) = di

[
20 log10(ULAP)

]
(4.17)

where A(f, di) is the signal attenuation related to the length and frequency. For instance,

the comparison of the measured attenuation of a cable with 100m and its estimate obtained

from (4.17) is plotted in Fig.4.4. As can be seen, the estimate fits well with the measured

results.
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Figure 4.4 Attenuation profile of 100m cable
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CHAPTER 5

MULTIPATH SIMULATION ENVIRONMENT

In order to predict the channel characteristics of a particular PLN, a simulation envi-

ronment is developed to estimate point-to-point channel transfer function within the PLC

network. Similar approaches have been proposed in literature for the characterization of the

channel transfer function. A simple approach which does not consider multi-path propaga-

tion was presented in [39]. With the method proposed, a rough estimation of the transfer

function was obtained. A mathematical description of the channel transfer function is intro-

duced in [33], in this approach the calculations of channel parameters for different networks

have to be analyzed individually. Besides this, in order to calculate point-to-point transfer

function within a PLN, a matrix-based algorithm is presented in [40]. On the other hand,

modeling PLC channels as a two-port network model and computing its transfer functions

were discussed in [41, 42].

In this section, a simulation environment is introduced. The algorithm considers the

PLN topology as a group of matrices where the connection points, reflection and transmis-

sion coefficients, termination impedances, and lengths are registered into matrices. Every

connection between the nodes and the physical characteristics of the interconnections are

represented as set of matrices. Every reflection and transmission coefficient of the network

is calculated by computing the input impedances and applied to each multipath component

to estimate their reflection coefficients.

5.1 Mapping Network Topology

The algorithm, first, creates the network matrices which contain the information about

the connections of the PLC network topology. Every connection between a termination
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point, ti, and branching point, bi, or between two branching points is entered into the

connection matrix CM . It is worth saying that the following assumptions, which are valid

for indoor PLNs, are taken into account;

• termination points are connected to a single point,

• there is not any direct connection between the termination points.

CMmxm =




t1 . . . th b1 . . . bk

t1 0 . . . 0 c1,h+1 . . . c1m

...
...

. . .
...

...
. . .

...

th 0 . . . 0 ch,h+1 . . . chm

b1 ch+1,1 . . . ch+1,h ch+1,h+1 . . . ch+1,m

...
...

. . .
...

...
. . .

...

bk cm1 . . . cmh cm,h+1 . . . cmm




(5.1)

where the total number of termination points is denoted by h, k represents the total number

of branching points, and m is the total number of nodes where m = h + k. Each element

of the connection matrix CM [m×m] corresponds to an interconnection between two nodes.

Since each termination point is connected to a single branching node and no connection

exists between termination points the first [h×h] elements of CM matrix is 0. Therefore,

cij is 1 when there is an interconnection between the corresponding two nodes, otherwise it

is 0. The CM matrix exhibits symmetry with respect to its diagonal.

cij = cji (5.2)

So, it is possible to show the CM matrix as;

CM[(h+k)x(h+k)] =




0[hxh] CT[hxk]

CT T
[kxh] CB[kxk]


 (5.3)
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where CT matrix describes the interconnections between the termination points and branch-

ing points, CB matrix shows the connections among the branching points, and (·)T rep-

resents the transpose of the input matrix. Since no connection exists between the corre-

sponding node and itself, CB matrix is a zero diagonal matrix,

CB[kxk] =




0 c12 . . . c1k

c21 0 . . . c2k

...
...

. . .
...

ck1 ck2 . . . 0




(5.4)

Lengths of each interconnection between the nodes are entered into an m×m matrix

LM which is generated by replacing the ones in CM matrix with the corresponding lengths.

Each length of the interconnections is described with lij . The length matrix LM can be

described as

LM[(h+k)x(h+k)] =




0[hxh] LT[hxk]

LT T
[kxh] LB[kxk]


 (5.5)

where LT corresponds to the length matrix of the cables between termination points and

branchings and LB matrix describes the lengths of the cables among the branching points.

5.2 Path Selection

In order to determine the possible paths from the transmitter to the receiver within a

PLC network, a new matrix P is formed by using the described interconnections in matrix

CM . Matrix P can be considered as the summary of matrix CM in which interconnections

between corresponding nodes are explicitly indicated. This step avoids the use of matrix CM

whose dimensions become significantly large as the network topology grows complicated.

Additionally, a random-path selector is generated. The random-path selector determines

the propagating path for each replica of the signal starting from the transmitter until

it reaches the receiver. Nodes determined by the random-path selector routine are put in

order considering the node labels of transmitter-receiver pairs. Each of these node sequences
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corresponds to one of the propagation paths between transmitter and receiver that is to

be considered in the derivation of (4.16). The length of these node sequences is calculated

by considering the interconnection lengths among nodes of interest. Besides, after defining

total length of the propagation path, attenuation for each path is computed using (4.17).

It is possible to find infinitely number of different multipath components even for a small

PLN. However, only L number of multipath components make relevant contributions to the

overall transfer function of the PLC channel. These L mutipath components are regarded

as significant paths. The selection criteria of significant paths is based on setting a power

threshold value. The comparison is made with the first received multipath component which

is the most powerful one among all the other replicas. The threshold value is set to 30dB;

10log10

|h0|2
|hi|2 ≥ 30 (5.6)

where h0 and hi corresponds to the first and the ith paths, respectively, and | · |2 represents

the power magnitude.

5.3 Reflection Coefficients

The next step of the proposed algorithm is calculating the transmission and reflection

coefficients for each node. Moreover, the total reflection factors for each path is com-

puted. Reflection and transmission coefficients are calculated using (4.5), respectively. At

a termination node, load impedance ZL is equal to the termination point impedance Zdi .

Additionally, reflection/transmission coefficient at a termination node can be computed as

it is described in (4.5).

However at a branching node, ZL is based on treating each branch extending from the

node as parallel connection. If a homogeneous network is assumed, the impedance seen by

the incident signal arriving at a branching node is given by the following expression:

ZL =
Z0

ni − 1
(5.7)
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where ni is the total number of branches extending from a node. Using (5.7), reflection and

transmission coefficients for the respective branching nodes can be calculated as:

Γi =
2− ni

ni
and Ti = Γi + 1 =

2
ni

(5.8)

Consequently, the matrix RΓ, whose elements expresses the reflection coefficient for each

node, is defined as:

R =
( t1 . . . th b1 . . . bk

Γ1 . . . Γh Γh+1 . . . Γm

)
(5.9)

and the transmission coefficient matrix TT is formed as:

T =
( t1 . . . th b1 . . . bk

T1 . . . Th Th+1 . . . Tm

)
(5.10)

It is worth mentioning that characteristic impedance and load impedances are mostly fre-

quency dependent values. However, since no statistical information regarding the impedances

is available, they are assumed to be constant steady-state impedance values for all frequen-

cies. In order to calculate the reflection factor for each multi-path component, the prop-

agation path node sequence is used to determine the appropriate transmission/reflection

coefficients. The process continues with calculation of channel transfer function H(f) given

by (4.16). By applying the inverse fast Fourier transform (IFFT) operation on channel

frequency response, channel impulse response is obtained as follows

h(τ) =
N∑

i=0

hiδ(t− τi) (5.11)

where τi denotes the delay of the ith arriving path.
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Figure 5.1 Impulse response of the channel between A and D

5.4 Simulation Results

In order to evaluate the simulation results, firstly, a simple T network, which was de-

picted in 4.2, is analyzed. The transmitter is located in position A and the receiver at D and

they are both matched to the characteristic impedances of the cables. It is assumed that the

network consists of one type of cable and the characteristic impedance of this specific cable

is 100Ω. The termination point C left open and the load impedance ZL was represented

as 108Ω in the simulations. Lengths of the cables l1, l2, and l3 are determined as 15m,

10m, and 15m, respectively. The simulation results are depicted in Fig. 5.1, Fig. 5.2(a),

and Fig. 5.2(b).

The 5 strongest paths are defined in Table 5.1. Due to the reflections occurred at the

open termination point, multipath components are received periodically. Received compo-

nents can also be identified from the impulse response, as well. The resulting frequency

response of the channel is shown in Fig. 5.2(a). Deep notches are observed around 4.5MHz,

13.5MHz, and 22.5MHz.
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Figure 5.2 Frequency response and phase details of the channel between node A and D

5.4.1 Effect of Physical Topology on PLC Channels

In this section, the effect of the physical topology of the power line medium on the

communication channel is investigated.
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Table 5.1 Multipath components for T network

Paths Reflection factor Length of propagation (m)

1 0.6667 30

2 0.4444 50

3 −0.1481 70

4 0.0494 90

5 −0.0165 110

5.4.1.1 Length Between Transmitter and Receiver

In order to understand the effect of the separation between the transmitter and receiver

on the PLC channel, the T-network topology, depicted in Fig. 4.2, is analyzed. Length

of the branch l2 was kept constant at 10m and the termination point at node C was left

open for the simulations. Length between the transmitter and receiver was varied as 25m,

50m, 100m, and 200m. The branching point B was connected at the midpoint for every

simulation. Channel impulse responses and transfer functions are shown in Fig. 5.3(a) and

Fig. 5.3(b), respectively.

From Fig.5.3(a), since delays between multipath components are related to the length

of the branch, delays between the first coming path and the others do not change with

the distance between transmitter and receiver changes. However, due to the attenuation,

distortion increases and the shape of the channel impulse response loses its original shape.

Transfer functions are depicted in Fig.5.3(b). As can be seen, the notches do not vary

with either frequency or line length. The reason for that is the delays of the multipath

components are not related to the distance between transmitter and receiver. The main

factor that can change the delays is the length of the branch BC. Additionally, attenuation

tends to increase as the distance and frequency increase.
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Figure 5.3 Impulse and frequency response for different distances between transmitter and
receiver; (I)25m, (II)50m, (III)100m, and (IV)200m

5.4.1.2 Length of Branch

In order to understand the effect of the length of the branch on both the transfer function

and channel impulse response, the topology used previously, which was depicted in Fig.4.2,

is used. The length of the branch BC was varied at 5m, 10m, 15m, and 20m, while the
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Figure 5.4 Impulse and frequency response for different lengths of branch; (I)5m, (II)10m,
(III)15m, and (IV)20m

distance between transmitter and receiver was kept constant at 50m and node C was left

open. Results are shown in Fig.5.4(a) and Fig.5.4(b).

As can be seen from Fig.5.4(a), with the increment in the length of branch BC, delay

and attenuation values for each received multipath component increase, while the delay
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Figure 5.5 Channel frequency responses for different load impedance values; (I)5Ω, (II)10Ω,
(III)25Ω, and (IV)50Ω

and the power of the first received path remains constant. Any change in the delays cause

changes in the position of the notches detected in transfer functions. From Fig.5.4(b), it

is observed that, with any increment in the length of the branch BC, number of notches,

detected in a particular frequency range, increases.

Since the position of the notches in frequency domain depend on the length of the

branch, a generalized expression can be given;

fN =
45
L

(2n + 1) for n = 0, 1, 2, ... (5.12)

where L represents the length of the branch BC in meter and the result is in MHz.

5.4.1.3 Load Impedance

In this section, the effect of the load impedance on channel transfer function is analyzed.

As described previously, characteristic impedance Z0 of the cable is assumed to be 100Ω
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Figure 5.6 Channel frequency responses for different load impedance values; (I)200Ω,
(II)50Ω, (III)1kΩ, and (IV)50kΩ

in the simulations. Here, influence of load impedances is analyzed by two different set of

impedance values, which can be grouped as

• Loads lower than Z0:

In order to see the effect of load impedance, the T-network topology, which has been

used for the previous simulations, was used. Distance between transmitter and receiver

was kept constant at 50m and length of the branching was 10m. Load impedance

values were defined as 5Ω, 10Ω, 25Ω, and 50Ω. Transfer functions are shown in

Fig.5.5.

Since reflection coefficient ΓCB increases as the load impedance increases toward Z0,

reflected multipath components attenuate less. Thus, stronger multipath components

will be received. This leads to an increment in the depth of the notches in transfer

functions.
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Figure 5.7 T network with multiple branchings distributed from single node

• Loads higher than Z0:

In order to see the effect of load impedances higher than Z0, the T-network topology

was used. Distance between transmitter and receiver was kept constant at 50m and

length of the branching was 10m. Load impedance values were defined as 200Ω, 500Ω,

1kΩ, and 50kΩ. Transfer functions are shown in Fig.5.6.

Since reflection coefficient ΓCB increases as the load impedance tends to get higher

values than Z0, reflected multipath components attenuate less. Thus, stronger mul-

tipath components will be received. This leads to an increment in the depth of the

notches in transfer functions. As can be seen from Fig.5.6, notches become more

prominent with higher values of load impedance.

5.4.1.4 Number of Branchings

In this section, number of branchings which are distributed from a single node, as de-

picted in Fig.5.7, is analyzed. Number of branches were defined as 2, 3, 4, and 5. Distance

between transmitter and receiver and length of branches were set to 100m and 10m, respec-

tively. Branches were ended with open circuits.

Fig.5.8(a) shows the channel impulse responses for all cases. It is seen that, increasing

the number of branches, which are connected at the same node, increases the attenua-
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Figure 5.8 Impulse and frequency response for multiple branches connected at the single
node; (I)two branches, (II)three branches, (III)five branches, and (IV)ten branches

tion. However, by increasing the number of branches, it is also observed that, subsequent

multipath components are becoming stronger.
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Transfer functions of the channels are depicted in Fig.5.8(b). As can be seen from the

figures, although the sharpness of the notches decreases while number of branches increases,

depths and widths of the notches are increasing.

5.5 Channel Characterization

Multipath characteristics of PLC channels are described by their impulse response. For

PLC systems, channel impulse response is highly related to the topology and the character-

istics of the PLN. In order to compare different multipath channel characteristics, different

delay parameters must be used. Due to the multipath signal propagation, inter-symbol

interference (ISI) may occur during the data transmission. The root-mean-squared (RMS)

delay spread and maximum excess delay spread are the multipath channel parameters that

can be derived from channel impulse responses [43]. These delay spread parameters are

very necessary for determining limits of the channel ISI for improvements of modulation

schemes.

The RMS delay spread describes the capability of the communication channel of support-

ing high data rate communications by implying the probability of performance degradation

because of the ISI effect. It is calculated as taking the square root of the second central

moment of the power delay profile and is defined to be

στ =
√

τ̄2 − (τ̄)2 (5.13)

where

τ̄2 =
∑R

k a2
kτ

2
k∑R

k a2
k

=
∑R

k P (τk)τ2
k∑R

k P (τk)
(5.14)

τ̄ =
∑R

k a2
kτk∑R

k a2
k

=
∑R

k P (τk)τk∑R
k P (τk)

(5.15)

P (τ) =
∣∣h(t, τ)

∣∣2 (5.16)
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where the RMS delay spread is denoted by στ and R is the number of paths considered in the

calculations. R is determined by applying a threshold considering the maximum value of the

received multipath components. τk represents the delay of the kth multipath component.

Delays are measured relative to the first detectable signal arriving at the receiver τ0 = 0.

The complex amplitude value of the received multipath component arriving with a delay of

τk is shown with h(t, τk) in the equation.

The maximum excess delay (X dB) of the power delay profile is defined as the relative

time delay from the first arrived multipath to the last multipath component that falls to X

dB below the maximum one. If τ0 represents the first arriving multipath component and

τX is the delay of the last multipath component which is still within X dB of the strongest

arriving multipath signal, then maximum excess delay can be calculated as

ρXdB = τX − τ0 (5.17)

where ρXdB represents the maximum excess delay with a threshold value of X dB. Please

note that, it is not necessary to receive the strongest amplitude value at τ0. With respect

to these definitions, the threshold value for both RMS delay spread and maximum excess

delay is set to 20dB.

In order to understand the effect of the network topology on the channel characterization

parameters, different PLN topologies are generated. The generic form of the PLN topology

is illustrated in Fig. 5.9. In this section, impact of loading at termination nodes and number

of branching nodes between transmitter and receiver is analyzed. Impedance values of

termination points were varied as characteristic impedance, 250Ω, 2500Ω, and open circuit.

The network is considered with two, four and six branches in the link between sending

and receiving ends. For each network topology, different power delay profiles with different

termination loads are analyzed.
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Figure 5.9 Graphical illustration of then PLC network topology considered in this section

Table 5.2 Channel parameters for the network with two branches

Branch Loads στ (in µs) ρ20dB (in µs)

Char. Imp. 0.0741 0.2

250Ω 0.1457 0.4333

2500Ω 0.1847 0.4667

Open circuit 0.1896 0.4667

5.5.1 PLN with Two Branches

Consider the PLN topology that is depicted in Fig. 5.9 with two branches between

transmitter and receiver. The distance from transmitter to receiver was kept constant at

100m and length of each branch was determined as 10m. Please note that, the branches

were equally distributed between transmitter Tx and receiver Rx. Simulation results are

depicted in Fig. 5.10 for four different loading cases. The channel characterization param-

eters, namely, RMS delay spread and maximum excess delays are shown in Table.5.2. It

is seen from the results that, for the case of termination loadings are equal to characteris-

tic impedance, both RMS delay spread and maximum excess delay have the lowest value.

Any increment in the loading impedances increase the delay parameter values. The reason

can be explained as, the multipath components, which are returning from the termination

points, are becoming stronger when the termination loading values are increasing toward

the characteristic impedance. So more powerful multipath components are received in the
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Figure 5.10 Simulated power delay profiles for the PLN with two branches and all termi-
nated in (I)characteristic impedance, (II)250Ω, (II)2500Ω, and (IV)open circuit

Table 5.3 Channel parameters for the network with four branches

Branch Loads στ (in µs) ρ20dB (in µs)

Char. Imp. 0.1434 0.4333

250Ω 0.2403 0.5

2500Ω 0.3882 0.6333

Open circuit 0.4189 0.6667

receiver which leads to an increment in the delay parameter values. It is observed that the

highest values among the delay parameter values are observed for the short circuit case.

5.5.2 PLN with Four Branches

Consider the PLN topology that is depicted in Fig. 5.9 with four branches between trans-

mitter and receiver. The distance from transmitter to receiver was kept constant at 100m
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Figure 5.11 Simulated power delay profiles for the PLN with four branches and all termi-
nated in (I)characteristic impedance, (II)250Ω, (II)2500Ω, and (IV)open circuit

and length of each branch was determined as 10m. The branches were equally distributed

between transmitter Tx and receiver Rx. Simulation results are depicted in Fig. 5.11 for

four different loading cases. The channel characterization parameters, namely, RMS delay

spread and maximum excess delays are shown in Table.5.3. It is seen from the results that,

for the case of termination loadings are equal to characteristic impedance, both RMS delay

spread and maximum excess delay have the lowest value. Any increment in the loading

impedances increase the delay parameter values. The reason can be explained as, the mul-

tipath components, which are returning from the termination points, are becoming stronger

when the termination loading values are increasing toward the characteristic impedance. So

more powerful multipath components are received in the receiver which leads to an incre-

ment in the delay parameter values. It is observed that the highest values among the delay

parameter values are observed for the short circuit case.
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Table 5.4 Channel parameters for the network with six branches

Branch Loads στ (in µs) ρ20dB (in µs)

Char. Imp. 0.2288 0.6

250Ω 0.4479 0.7

2500Ω 0.6326 0.7333

Open circuit 0.6572 0.7333

0 1 2 3 4

x 10
−6

−80

−60

−40

−20
−I−

Time − s

R
e

ce
iv

e
d

 p
o

w
e

r 
−

 d
B

0 1 2 3 4

x 10
−6

−70

−60

−50

−40

−30

−20
−II−

Time − s

R
e

ce
iv

e
d

 p
o

w
e

r 
−

 d
B

0 1 2 3 4

x 10
−6

−60

−50

−40

−30

−20
−III−

Time − s

R
e

ce
iv

e
d

 p
o

w
e

r 
−

 d
B

0 1 2 3 4

x 10
−6

−60

−50

−40

−30

−20
−IV−

Time − s

R
e

ce
iv

e
d

 p
o

w
e

r 
−

 d
B

Figure 5.12 Simulated power delay profiles for the PLN with four branches and all termi-
nated in (I)characteristic impedance, (II)250Ω, (II)2500Ω, and (IV)open circuit

5.5.3 PLN with Six Branches

Consider the PLN topology that is depicted in Fig. 5.9 with six branches between trans-

mitter and receiver. The distance from transmitter to receiver was kept constant at 100m

and length of each branch was determined as 10m. Please note that, the branches were

equally distributed between transmitter Tx and receiver Rx. Simulation results are de-

picted in Fig. 5.12 for four different loading cases. The channel characterization param-
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eters, namely, RMS delay spread and maximum excess delays are shown in Table.5.4. It

is seen from the results that, for the case of termination loadings are equal to characteris-

tic impedance, both RMS delay spread and maximum excess delay have the lowest value.

Any increment in the loading impedances increase the delay parameter values. The reason

can be explained as, the multipath components, which are returning from the termination

points, are becoming stronger when the termination loading values are increasing toward

the characteristic impedance. So more powerful multipath components are received in the

receiver which leads to an increment in the delay parameter values. It is observed that the

highest values among the delay parameter values are observed for the short circuit case.

5.6 Statistical Analysis

PLC systems may have entirely different physical characteristics. Due to this several

distinct topology features, delay parameters may vary extensively. Up to now, however,

PLC channel characterization process has been done for specific topologies [33, 34, 40, 44–

53]. However, in order to design reliable communication systems, which can work in every

desired channel, analyzing the channel parameters statistically is very important. In this

section, instead of analyzing the results of some specific PLN topologies, results of several

different PLN topologies will be analyzed statistically.

Among the several different physical characteristics of PLNs, impact of the following

items on the delay spread parameters, namely, RMS delay spread and maximum excess

delay (20dB), will be examined in this section:

• distance between transmitter and receiver

• number of branching nodes between transmitter and receiver

• length statistics of branches

In order to analyze these parameters, more complicated PLN topologies are formed

as depicted in Fig. 5.13 where nodes denoted by B and T are branching and termination

points, respectively. The total number of branching points between transmitter and receiver
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Figure 5.13 Graphical illustration of then PLC network topology considered in this section

is denoted by k. Number of branches distributed from ith branching point is shown by ni

and length of the cable between node x and y is shown by lxy.

As shown in the previous section and analyzed in [44, 45], delay spread parameters take

the maximum values where termination loadings are terminated in very low impedances

or very high impedances which are closer to infinity. In order to consider the worst case

scenarios for all the PLN topologies and solely focus on the topics listed above, all the

termination points are assumed to be open circuits [54].

In this analysis, matrix based PLC simulation technique proposed in Section 5.1 will

be considered. However, matrices are modified in a way that the simulation module lets

us generate random PLC networks with different physical characteristics. At the same

time, the simulation environment still gives us the control of the specific parameters of

the physical topology which the focus is on. The topology of the network is generated by

generating different connection matrices

C[(h+2+k)x(h+2+k)] =




0[(h+2)x(h+2)] CT[(h+2)xk]

CT T
[kx(h+2)] CB[kxk]


 (5.18)

where CT matrix describes the interconnections between the termination points and branch-

ing points, CB matrix shows the connections among the branching points. Total number

of termination points and the total number of branching points are described by h and

k, respectively. The number “2” comes from the interconnections of transmitter and re-

ceiver to the PLN. Number of branches extending from each branching point is uniformly
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distributed over [1,4] in the simulations. Characteristic impedance of the cables is set to

100Ω and transmitter and receiver are also assumed to be matched to the characteristic

impedance. Impact of physical attributes is statistically investigated by generating 20000

realizations of PLC network for each case taken into account.

Different PLC topologies with different physical attributes are generated by manipulat-

ing the values of h, k, and lengths of interconnections lxy. Difference on h and k values

results in a change in the dimensions of the submatrices denoted as CB and CT . How-

ever, it is worth saying that, in order to focus solely on the impact of specific physical

characteristics, simulations are performed with constant number of branching points. For

example, impact of distance between transmitter and receiver is analyzed where the number

of branching points is kept constant at 4 or impact of number of branchings are analyzed

by setting constant number of k for each 20000 realizations. Consequently, there is no need

to change the CB matrix throughout the simulations for constant branching point number.

CB matrix can be shown as

CB[k×k] =




0 1 0 . . . . . . . . . 0

1 0 1
...

0 1 0
. . .

...
...

. . . . . . . . .
...

...
. . . 0 1 0

... 1 0 1

0 . . . . . . . . . 0 1 0




(5.19)

However, since number of branches distributed from each branching point is uniformly

distributed, this case is not valid for CT matrix. Size of CT matrix will be changed with

the total number of branches h.

h =
k∑

i=1

ni (5.20)
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Please note that, as stated before, each ni value is uniformly distributed over [1,4]. Thus,

mapping of CT matrix can be shown as

CT[(h+2)xk] =




1 0 . . . 0

0 0 . . . 1

1 0 . . . 0
...

...
. . .

...

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
...

...
. . .

...

0 0 . . . 1




⇐ Tx −B1 connection

⇐ Bk −Rx connection

⇐ Branches from B1

⇐ Branches from B2

⇐ Branches from Bi

⇐ Branches from Bk

(5.21)

where the first and the second rows represent the interconnections from transmitter to

node B1 and from receiver to Bk, respectively. The rest of CT matrix is expressing other

connections between the termination nodes and branching points.

As discussed in detail in Section 5.1, the corresponding lengths of each interconnection

and impedances at termination points are kept in separate matrices. With any change in the

dimensions of CM matrix, dimensions of length and impedance matrices will also change.

The impact of number nodes between transmitter and receiver on RMS delay spread

and maximum excess delay can be seen in Fig. 5.14(a). While deriving this figure, distance

between transmitter and receiver and length statistics of the branches were considered to

be 150m and U[10m − 30m], respectively, where U refers to uniform distribution. Upon

the analysis performed, it is concluded that an increase in the number of branching nodes

gives rise to an increase in RMS delay spreads value. This behavior can be related to more

multipath components received and to the multipath components arriving at larger delays

as k increased.
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Figure 5.14 Dependency of RMS delay spread (στ ) and maximum excess delay (ρ) on the
number of branching points k between Tx and Rx

Fig. 5.15(a) and Fig. 5.15(b) show the impact of the distance between transmitter and

receiver on RMS delay spread and maximum excess delay. Throughout the simulations,

number of branching points between transmitter and receiver was kept constant as 4 and

branch lengths are assumed to be uniformly distributed over [10m − 30m]. Similar to the
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Figure 5.15 Dependency of RMS delay spread (στ ) and maximum excess delay (ρ) on the
distance between Tx and Rx

previous case analyzed, increasing separation distance between transmitter and receiver

leads to the reception of multipath components at larger delays leading to an increase in

RMS delay spread and maximum excess delay values.
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Figure 5.16 Dependency of RMS delay spread (στ ) and maximum excess delay (ρ) on the
length statistics of branches

Finally, the impact of branch length statistics is seen in Fig. 5.16(a) and Fig. 5.16(b)

where the number of branching points between transmitter and receiver was set to 4 and

separation distance between transmitter and receiver was 150m. Among all the analyzed

factors, change in branch length statistics seems to yield the most drastic change in delay
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spread values. The reason for that can be explained as, expanding the range of lengths

increase the probability of receiving multipath components with larger delays.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Recently, communication over power lines has been addressed as one of the competitive

technology for indoor digital entertainment communication systems. However, design of

PLC systems requires a very good understanding of noise, attenuation, and multipath char-

acteristics of the power line channel. This thesis is mainly focused on noise and multipath

characteristics of PLC channels within the frequency range between 30kHz and 30MHz.

Noise is regarded as one of the main challenges that has to be addressed for the establish-

ment of reliable PLC based communication systems. Impulsive noise, generated by house

appliances connected to the network, being one of the noise types present in PLC systems,

needs special attention. In Chapter 2, in order to have a better understanding of noise

generated by electrical devices, a novel and reliable measurement setup was established.

The effectiveness of the measurement setup was shown. Several electrical home appliances

were analyzed and the most significant noise sources have been identified. Their features

both in time and frequency are extracted. Peak excursion and maximum power change of

each device has been identified. Additionally, the additive effect of noise in PLC channels

is investigated.

In Chapter 3, a noise simulation model was introduced. The proposed model takes all

the noise sources under consideration and generates each type of noise, namely colored back-

ground noise, narrowband noise, and impulsive noise, individually. Results were depicted

and discussed.

Mutlipath and attenuation characteristics of PLC channels were investigated in Chapter

4. Reflection and transmission coefficients were derived. Multipath analysis for a T network

is done. In order to have a better understanding on attenuation, a reliable measurement
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setup was established and the attenuation profile, namely ULAP, has been developed. The

estimate values were compared with the measurement results.

In Chapter 5, a matrix based PLC multipath simulation environment was introduced. A

unique path selection algorithm was proposed. Channel transfer functions of several simple

networks are analyzed with relevant discussions. Effect of

• direct line length between transmitter and receiver,

• length of the branches connected to the PLN,

• number of the branches connected to a single node along the direct line,

• impedance values seen at termination nodes,

were investigated. Important relations between the above mentioned physical attributes and

the channel transfer functions are drawn based upon the simulation results. Besides the

investigation of some specific PLNs, impact of the physical characteristics of PLC network

on the channel delay spread parameters, namely RMS delay spread and maximum excess

delay, are studied statistically. Effect of

• number of branching nodes between transmitter and receiver

• separation distance between transmitter and receiver

• length statistics of branches

are analyzed. For each attribute examined, statistics regarding the channel delay spread pa-

rameters are presented by observing corresponding cumulative distribution function (CDF)

curves. Relations between the attributes listed above and the channel delay parameters are

revealed.

This thesis can be considered as a basis for future studies in this field. Future works are

planned as

• investigation of noise, multipath, and attenuation characteristics of power line chan-

nels for higher frequency ranges up to 100MHz,
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• real-time detection of electrical home appliances by investigating the noise they emit

into the PLN while they are operating,

• improvement of multipath simulation environment by introducing the AC cycle and

frequency dependent impedance values,

• design of a reliable orthogonal frequency division multiplexing (OFDM) based PLC

modem.

The purpose of this study is to highlight the importance and the effectiveness of PLC for

next generation communication systems.
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Appendix A Calculation of Reflection and Transmission Coefficients

Figure A.1 Terminated lossless transmission line

Reflection coefficient in transmission lines is analyzed in a terminated lossless transmis-

sion line as depicted in Fig. A.1.

The total voltage on line can be written as the sum of the incident and reflected waves

V (z) = V +
0 e−jβz + V −

0 ejβz (A.1)

I(z) =
V +

0

Z0
e−jβz +

V −
0

Z0
ejβz (A.2)

where V +
0 is the amplitude of incident wave and ej··· shows the phase difference. The total

voltage and current at the load are related by the load impedance, so at z = 0

ZL =
V +

0 e−jβz + V −
0 ejβz

V +
0

Z0
e−jβz +

V −
0

Z0
ejβz

(A.3)

ZL =
V (0)
I(0)

=
V +

0 + V −
0

I+
0 − I−0

Z0 where z = 0 (A.4)

Since the reflection coefficient is the ratio between the incident and reflected waves, reflection

coefficient can be written as
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Appendix A (Continued)

Figure A.2 Transmission line feeding a line of different characteristic impedance

Γ =
V −

0

V +
0

(A.5)

where Γ represents the reflection coefficient. If we solve (A.4) for V −
0

V −
0 =

ZL − Z0

ZL + Z0
V +

0 (A.6)

So the term reflection coefficient can be written as

Γ =
ZL − Z0

ZL + Z0
(A.7)

Transmission coefficient describes the amplitude of the transmitted wave relative to the

incident wave. In order to derive the transmission coefficient, consider a transmission line

connected to another line of different characteristic impedance. If the load line is infinitely

long and terminated with its own characteristic impedance, it can be assumed that no

reflections will receive from its end. A transmission line feeding another one is depicted in

Fig. A.2.
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Appendix A (Continued)

If the transmission coefficient is shown with T

Vrefl = ΓV +
0 where Γ =

Z1 − Z0

Z1 + Z0
(A.8)

Vtrans = TV +
0 (A.9)

So the voltage for z < 0 and for z > 0, in the absence of reflections, can be written as

V (z) = V +
0 e−jβz(1 + Γej2βz) for z < 0 (A.10)

V (z) = TV +
0 e−jβz for z > 0 (A.11)

The total voltage at z = 0 should be equal. By equating (A.10) and (A.11) at z = 0

V +
0 e−jβz(1 + Γej2βz) = TV +

0 e−jβz for z = 0 (A.12)

by solving (A.12) transmission coefficient can be calculated as

T = 1 + Γ (A.13)

T = 1 +
Z1 − Z0

Z1 + Z0
(A.14)

T =
2Z1

Z1 + Z0
(A.15)

It is obvious that reflection coefficient can get a value between [−1, 1], where reflection

coefficient of −1 represents the termination ended by short circuit and 1 represents a termi-

nation ended with open circuit. Consequently, it may be surprising but T may be greater
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Appendix A (Continued)

than unity. However, it should be kept in mind that Γ and T are the relative values of the

voltage of the signal. While extracting these coefficients, current values did not analyzed.

In order to show the accuracy of this statement, power values of the incident wave and

reflected and transmitted waves are compared. According to the conservation of energy,

the total power of the signals after the impedance discontinuity point should remain same

with the power of the incident signal.

If the transmission line depicted in Fig.A.2 is taken into consideration, voltage and

current values on the line for z < 0 are

Vz<0(z) = V +
0 e−jβz(1 + Γe2jβz) (A.16)

Iz<0(z) =
V +

0

Z0
e−jβz(1− Γe2jβz) (A.17)

The time-average power flow along the line for z < 0 is

Pz<0 =
1
2
Re

[
Vz<0(z) · Iz<0(z)∗

]
(A.18)

=
1
2
Re

[
V +

0 e−jβz(1 + Γe2jβz)

(
V +

0

)∗
Z0

ejβz(1− Γ∗e−2jβz)
]

(A.19)

=

∣∣V +
0

∣∣2
2Z0

Re
[
1− Γ∗e−2jβz + Γe2jβz − |Γ|2] (A.20)

Please note that, characteristic impedance values are mostly real numbers as explained in

Sec. 4.2.1. The middle two terms in the brackets are of the term form x − x∗ = 2jIm(x)

and so they are purely imaginary. This simplifies the result to
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Appendix A (Continued)

Pz<0 =

∣∣V +
0

∣∣2
2Z0

(1− |Γ|2) (A.21)

=

∣∣V +
0

∣∣2
2Z0︸ ︷︷ ︸
Pinc

− |Γ|2
∣∣V +

0

∣∣2
2Z0︸ ︷︷ ︸

Prefl

(A.22)

The time-average power flow along the line for z > 0, which is equal to the power of

transmitted wave, is

Pz>0 =
1
2
Re

[
Vz>0(z) · Iz>0(z)∗

]
(A.23)

where

Vz>0(z) = TV +
0 e−jβz (A.24)

Iz>0(z) = T
V +

0

Z1
e−jβz for z > 0 (A.25)

then

Pz>0 =
1
2
Re

[
TV +

0 e−jβzT ∗
(
V +

0

)∗
Z1

ejβz
]

(A.26)

=

∣∣T ∣∣2∣∣V +
0

∣∣2
2Z1

(A.27)

According to the conservation of energy

Pinc = Prefl + Ptrans (A.28)

equality should be maintained. Power of the incident wave is
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Appendix A (Continued)

Pinc =

∣∣V +
0

∣∣2
2Z0

(A.29)

and the total power of reflected and transmitted waves can be written as

Prefl + Ptrans =

∣∣Γ∣∣2∣∣V +
0

∣∣2
2Z0

+

∣∣T ∣∣2∣∣V +
0

∣∣2
2Z1

(A.30)

=

∣∣V +
0

∣∣2
2

(∣∣Γ∣∣2
Z0

+

∣∣T ∣∣2
Z1

)
(A.31)

=

∣∣V +
0

∣∣2
2

(Z2
0 + Z2

1 − 2Z1Z0

Z0(Z0 + Z1)2
+

4Z2
1

Z1(Z2
0 + Z2

1 )

)
(A.32)

=

∣∣V +
0

∣∣2
2

(Z0 + Z1)2

Z0(Z0 + Z1)2
(A.33)

=

∣∣V +
0

∣∣2
2Z0

(A.34)

so

Pinc = Prefl + Ptrans is achieved for T = 1 + Γ (A.35)

which proves that, it is possible to find values of transmission coefficient that are greater

than unity.
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